

A wide band backend for Radio Astronomy in Robledo Description and commissioning results

J. Ricardo Rizzo

Centro de Astrobiología

December 21, 2011

- · CAR
 - José Cemicharo
 Miguel Gutiérrez
- a Ricardo Rizzo
- INTA
- Ana Baquero
 Juan Ramón Larrañaga
 - » Laura Ojalvo

- MDSCC:
 - José IVI. Castro
 - Cristina García Miró
 Ioana Sotuela
- JPL/NASA:
- Manuel Franco

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baguero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

MDSCC:

Jesús Calvo
 José M. Castro Cerón

Cristina García Miró
Ioana Sotuela

Manuel Vázquez

JPL/NASA:

Ivianuel Franco
 Tom Kuiner

CAB:

- José Cernicharo
- Miguel Gutiérrez
- Ricardo Rizzo

INTA:

- Ana Baquero
- Juan Ramón Larrañaga
- Laura Ojalvo
- Antonio Pedreira

MDSCC:

Jesé M. Castro Cerón
 Cristina García Miró

Manuel Vázguez

JPL/NASA:

Tom Kuiner

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

MDSCC:

José M. Castro Cerán
 Gistina García Miró

Manuel Vázquez

JPL/NASA:

Manuel Franco
 Tom Malana

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baguero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

MDSCC:

Jesus Calvo
 José M. Casti

Cristina García Miró
 Laura Saturala

Manuel Vázquez

Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baduero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero

 - Laura Ojalvo

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

• MDSCC:

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- loana Sotuela
- Manuel Vázguez

• JPL/NASA:

- Manuel Franco
 - Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- Ioana Sotuela
- Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- Ioana Sotuela
- Manuel Vázguez
- JPL/NASA:

The team

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- Ioana Sotuela
- Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

The team

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- Ioana Sotuela
- Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- Ioana Sotuela
- Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- Jesús Calvo
- José M. Castro Cerón
- Cristina García Miró
- Ioana Sotuela
- Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- MDSCC:
 - Jesús Calvo
 - José M. Castro Cerón
 - Cristina García Miró
 - Ioana Sotuela
 - Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- MDSCC:
 - Jesús Calvo
 - José M. Castro Cerón
 - Cristina García Miró
 - Ioana Sotuela
 - Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

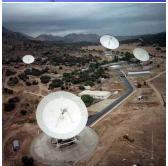
- CAB:
 - José Cernicharo
 - Miguel Gutiérrez
 - Ricardo Rizzo
- INTA:
 - Ana Baquero
 - Juan Ramón Larrañaga
 - Laura Ojalvo
 - Antonio Pedreira

- MDSCC:
 - Jesús Calvo
 - José M. Castro Cerón
 - Cristina García Miró
 - Ioana Sotuela
 - Manuel Vázquez
- JPL/NASA:
 - Manuel Franco
 - Tom Kuiper

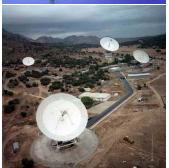
Paper's coming

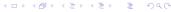
- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service.
- Spanish investigador required

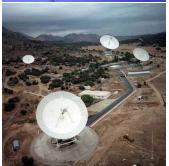
- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service.
- Spanish investigador required

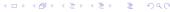


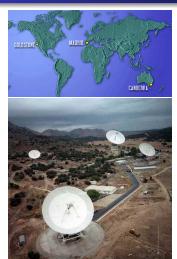
- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service mode.
- Spanish investigador required.




- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service mode.
- Spanish investigador required.

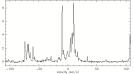


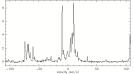

- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service mode.
- Spanish investigador required.



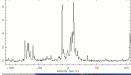
- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service mode.
- Spanish investigador required.

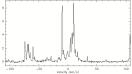


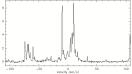

- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service mode.
- Spanish investigador required.



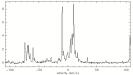
- NASA tracks "Deep Space" missions using: Goldstone, Canberra, Robledo.
- In Robledo, there are 6 antennas having diameters between 26 and 70 m.
- International agreement: Spain operates antennas as radiotelescopes.
- 200 400 hr/yr/antenna in service mode.
- Spanish investigador required.



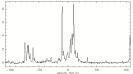




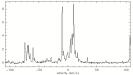
- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific



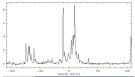
- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific



- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific



- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific



- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific

- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific

- DSS-63, 70m. K band.
 18 26 GHz.
- DSS-54, 34m. Q band.
 38 50 GHz.
- Some key molecules: H₂O, NH₃, CCS, CS, SiO, CH₃OH, HC_{2n+1}N, carbon chains, etc.
- Star forming regions, evolved stars, ISM, CSM, PDRs, Solar System, cold clouds, extragalactic, etc.
- Spectral line surveys. Chemical complexity.
- Any (yet) unexplored scientific cases.

- Iotal available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies
- Available (untill 2011) backend 2 to 16 MHz bandwidth:

- Iotal available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies
- Available (untill 2011) backend 2 to 16 MHz bandwidth:

- Total available time. Up to
- Scheduling & emergencies.
- Available (untill 2011) backend.

- Total available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies.
- Available (untill 2011) backend.
 2 to 16 MHz bandwidth:
 - iust one line,
 - just one polarization,
 - sometimes poor
 - spectral coverage.

- Total available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies.
- Available (untill 2011) backend.
 2 to 16 MHz bandwidth:
 - iust one line,
 - just one polarization,
 - sometimes poor
 - spectral coverage.

- Total available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies.
- Available (untill 2011) backend.
 2 to 16 MHz bandwidth:
 - just one line,
 - just one polarization,
 - sometimes poor spectral coverage

- Total available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies.
- Available (untill 2011) backend.
 2 to 16 MHz bandwidth:
 - just one line,
 - just one polarization,
 - sometimes poor spectral coverage

- Total available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies.
- Available (untill 2011) backend.
 2 to 16 MHz bandwidth:
 - just one line,
 - just one polarization,
 - sometimes poor spectral coverage

- Total available time. Up to 400 hr/yr/antenna.
- Scheduling & emergencies.
- Available (untill 2011) backend.
 2 to 16 MHz bandwidth:
 - just one line,
 - just one polarization,
 - sometimes poor spectral coverage.

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several. GHz.
- High quality baselines.
- Easily upgradeable
- Portable among different antennas.
- Reusable.

 Reusable.

 Reusable.

 Reusable.

 Reusable.

 Reusable.

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- の Reusable.

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several GHz
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- Keusable. ◆□▶◆□▶◆≣▶◆≣▶ ●■ 夕९℃

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.

- Broad instanstaneous
- bandwidth, at least severall GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- Reusable.

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- Reusable.

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- Reusable.

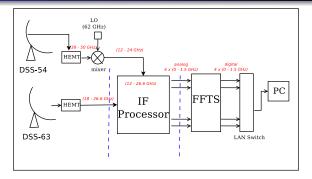
Aims

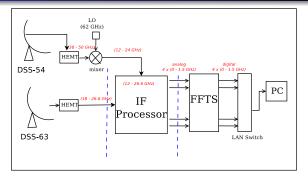
- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.

- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- Reusable.

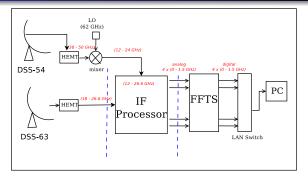
Aims

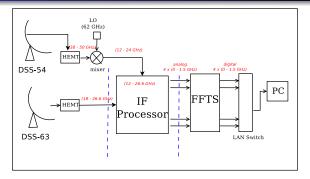
- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.


- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.

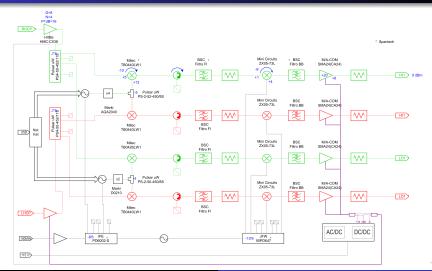

Aims

- To enhance the efficiency of HC time at MDSCC, improving its scientific return.
- To tackle new scientific cases using HC.


- Broad instanstaneous bandwidth, at least several GHz.
- High quality baselines.
- Easily upgradeable.
- Portable among different antennas.
- Reusable.


- Two polarizations.
- 4 x 1.5 GHz instantaneous bandwidth.
- Two IFs tunable at a time. Partly prepared for 4.
- Freq range from 12 to 26 GHz (valid for K and Q).

- Two polarizations.
- 4 x 1.5 GHz instantaneous bandwidth.
- Two IFs tunable at a time. Partly prepared for 4.
- Freq range from 12 to 26 GHz (valid for K and Q).



- Two polarizations.
- 4 x 1.5 GHz instantaneous bandwidth.
- Two IFs tunable at a time. Partly prepared for 4.
- Freq range from 12 to 26 GHz (valid for K and Q).

- Two polarizations.
- 4 x 1.5 GHz instantaneous bandwidth.
- Two IFs tunable at a time. Partly prepared for 4.
- Freq range from 12 to 26 GHz (valid for K and Q).

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
- 2× LO (12 − 20 GHz)
 2× HI (18 − 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

- Desgined and built at INTA's Radar Laboratory.
- Four channels:

IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 2× LO (12 20 GHz)
 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals, 1.5 GHz instantaneous bandwidth.

The IF Processor

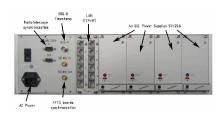
- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

The IF Processor

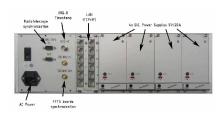
- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

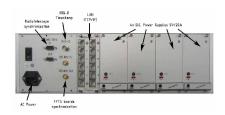

The IF Processor

- Desgined and built at INTA's Radar Laboratory.
- Four channels:
 - 2× LO (12 20 GHz)
 - 2× HI (18 26 GHz)
- IF 4.5 GHz.

- Synthesizers controlled by serial ports.
- Input: Two RF signals in the range 12 – 26 GHz.
- Output: Four BB signals,
 1.5 GHz instantaneous
 bandwidth.

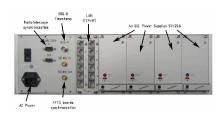

- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth
 of 1.5 GHz
- ADCs of 8 bits
- Operated by ethernet.

- 8192 channels,
 183 kHz resolution.
- Other cores:


- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.

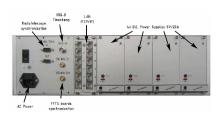
- 8192 channels,183 kHz resolution.
- Other cores:

- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.

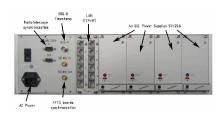

- 8192 channels,
 183 kHz resolution.
- Other cores:

Aims and features
Concept
The IF Processor
The FFTS
SDAI: Spectroscopic Data Acquisition Interface

The FFTS

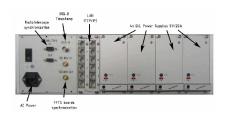

- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.

• 8192 channels, 183 kHz resolution.


- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.

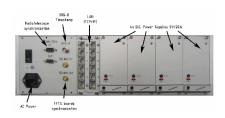
• 8192 channels, 183 kHz resolution.

- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.



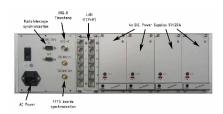
• 8192 channels, 183 kHz resolution.

Aims and features
Concept
The IF Processor
The FFTS
SDAI: Spectroscopic Data Acquisition Interface


- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.

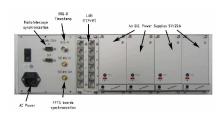
- 8192 channels,
 183 kHz resolution.
- Other cores:
 - 500 MHz / 35 kHz
 16384 channels
 100 MHz / 7 kHz
 16384 channels

- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.


- 8192 channels,
 183 kHz resolution.
- Other cores:

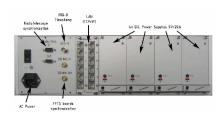
500 MHz / 35 kHz
 16384 channels
 100 MHz / 7 kHz
 16384 channels

- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.

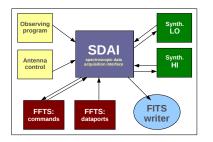


- 8192 channels,
 183 kHz resolution.
- Other cores:
 - 500 MHz / 35 kHz
 16384 channels
 - 100 MHz / 7 kHz
 16384 channels

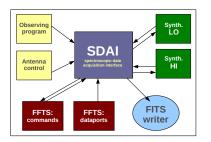
- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.



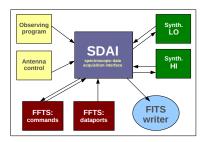
- 8192 channels,
 183 kHz resolution.
- Other cores:
 - 500 MHz / 35 kHz
 16384 channels
 - 100 MHz / 7 kHz
 16384 channels



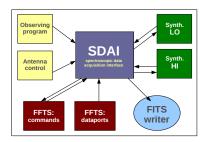
- FPGA-based. Chips virtex-4.
- Instantaneous bandwidth of 1.5 GHz.
- ADCs of 8 bits.
- Operated by ethernet.



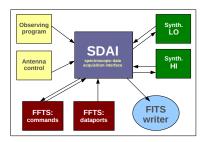
- 8192 channels,
 183 kHz resolution.
- Other cores:
 - 500 MHz / 35 kHz
 16384 channels
 - 100 MHz / 7 kHz
 16384 channels

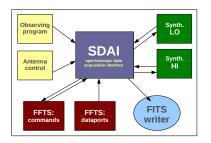


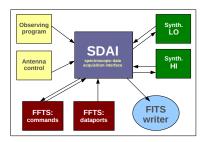
- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations
- Communications through sockets and USB.

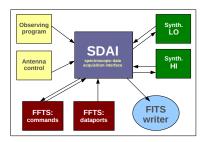


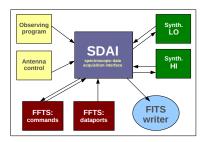
- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz
- Multicore coming soon
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations
- Communications through sockets and USB.

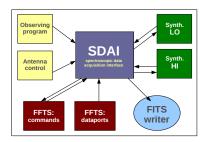



- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.

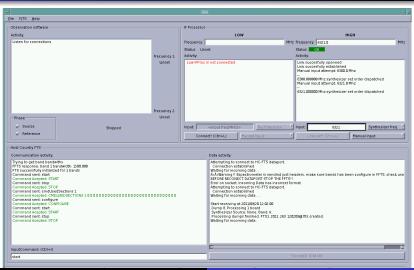

- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.


- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.


- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz.
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.

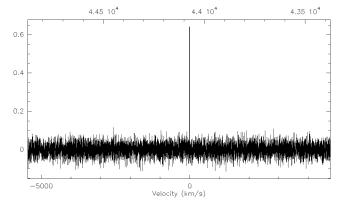

- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz.
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.

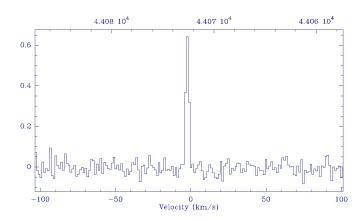
- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz.
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.


- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz.
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.

- Developed in python 2.5.
- PyQt4 for Graphical interface.
- Libraries provided: right now, only 1.5 GHz.
- Multicore coming soon.
- Fast, reliable.
- Syncronizes and centralizes all spectroscopic operations.
- Communications through sockets and USB.

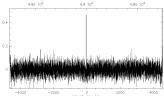
Aims and features
Concept
The IF Processor
The FFTS
SDAI: Spectroscopic Data Acquisition Interface


SDAI: Snapshot


First light Centering at different frequencies Comparing synthesizers A 2.6-GHz-bandwidth spectrum of Orion KL Complexity of Sgr B2 in 20 minutes A 8.5-GHz-bandwidth spectrum of TMC-1

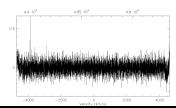
The first light: CH₃OH in DR21-W

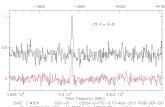
```
2525; 3 DR21-W
                     CH30H(7-6)
                                  DSS54-Q-FTS1 0:13-AUG-2011 R:10-SEP-2011
    RA: 20:37:07.60 DEC: 42:08:46.0 Eq 1950.0 Offs:
                                                        +0.0
                                                                  +0.0
                 tau: 0.168 Tsys:
                                     276. Time:
                                                       min El: 76.3
         8192 10: 3808.12
                                        0.000
                                                  Dv: -1,246
                                                                  LSR
                 44069.3670
                                 Df: 0.1831
                                                    52.7130000
```



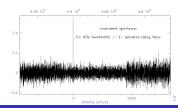
Zoom

CS in W3(OH): freq & intensity stabilities

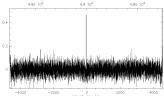

2543; 1 W30H 48990.955 DSS54-Q-FTS1 0:13-AUG-2011 R:13-AUG-2011 RA: 02:23:16.50 DEC: 61:38:80.0 Eq 1950.0 0fts: +0.0 +0.0 Unknown tau: 0.168 Tys: 282.1 Time: 7.8 min Et 32.6 N: 8192 l0: 4096.00 VC: -48.00 Dv: -1.120 LSR F0: 4890.0550 DF: 0.1831 F1: 0.00000000


 Wilcolfy (Irry/s)
 Wilcolfy (Irry/s)

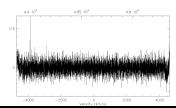
 2551; 1 W30H
 48372.456
 56554-0−175
 0:13-4U5-2011
 8:13-4U5-2011

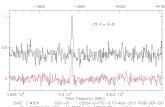

 RN: 02:2516.50
 5600:
 613.88:80
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0</

2551; 1 W30H 48372.456 DS554-Q-FT51 0:13-AUG-2011 R:13-AUG-2011 R:102:316.50 DEC: 6138:1580 Eq. 1950.0 015s: +0.0 +0.0 Uninown tos: 0.168 Tsys: 261. Time: 3.0 in: E1:33.2 N: 8192 I0: 4096.00 V0: -48.00 Dv: -1.135 LSR F0 48372.4560 Df: 0.1831 F1 0.00000000

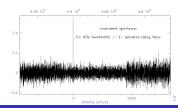

2543: 3 W30H CS(1-0) DSS4-0-FFSI 0:13-AUG-2011 R08-SEP-201
RA: 022316.00 EBC: 6138-850 Eq 1950.00 Offs: +0.0 +0.0
Unknown tosi: 0.168 Fgys' 282. Trie: 11. mit El: 33.2
R: 11571 10: 7475.00 VC: -48.00 Dr: -1.120 LSR
FD: 48900.9559 Dr: 0.133 Fi: -618.49900.00

CS in W3(OH): freq & intensity stabilities

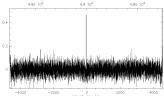

2543; 1 W30H 48990.955 DSS54-Q-FTS1 0:13-AUG-2011 R:13-AUG-2011 RA: 02:23:16.50 DEC: 61:38:80.0 Eq 1950.0 0fts: +0.0 +0.0 Unknown tau: 0.168 Tys: 282.1 Time: 7.8 min Et 32.6 N: 8192 l0: 4096.00 VC: -48.00 Dv: -1.120 LSR F0: 4890.0550 DF: 0.1831 F1: 0.00000000


 Wilcolfy (Irry/s)
 Wilcolfy (Irry/s)

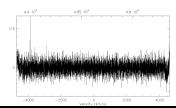
 2551; 1 W30H
 48372.456
 56554-0−175
 0:13-4U5-2011
 8:13-4U5-2011

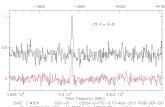

 RN: 02:2516.50
 5600:
 613.88:80
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0</

2551; 1 W30H 48372.456 DS554-Q-FT51 0:13-AUG-2011 R:13-AUG-2011 R:102:316.50 DEC: 6138:1580 Eq. 1950.0 015s: +0.0 +0.0 Uninown tos: 0.168 Tsys: 261. Time: 3.0 in: E1:33.2 N: 8192 I0: 4096.00 V0: -48.00 Dv: -1.135 LSR F0 48372.4560 Df: 0.1831 F1 0.00000000

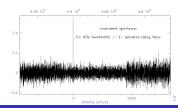

2543: 3 W30H CS(1-0) DSS4-0-FFSI 0:13-AUG-2011 R08-SEP-201
RA: 022316.00 EBC: 6138-850 Eq 1950.00 Offs: +0.0 +0.0
Unknown tosi: 0.168 Fgys' 282. Trie: 11. mit El: 33.2
R: 11571 10: 7475.00 VC: -48.00 Dr: -1.120 LSR
FD: 48900.9559 Dr: 0.133 Fi: -618.49900.00

CS in W3(OH): freq & intensity stabilities

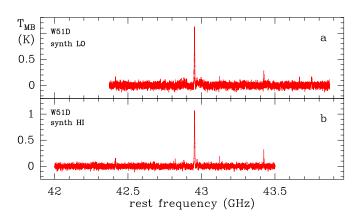

2543; 1 W30H 48990.955 DSS54-Q-FTS1 0:13-AUG-2011 R:13-AUG-2011 RA: 02:23:16.50 DEC: 61:38:80.0 Eq 1950.0 0fts: +0.0 +0.0 Unknown tau: 0.168 Tys: 282.1 Time: 7.8 min Et 32.6 N: 8192 l0: 4096.00 VC: -48.00 Dv: -1.120 LSR F0: 4890.0550 DF: 0.1831 F1: 0.00000000


 Wilcolfy (Irry/s)
 Wilcolfy (Irry/s)

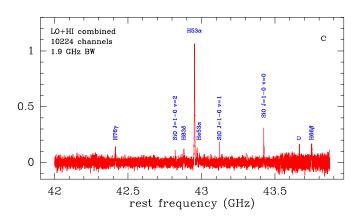
 2551; 1 W30H
 48372.456
 56554-0−175
 0:13-4U5-2011
 8:13-4U5-2011

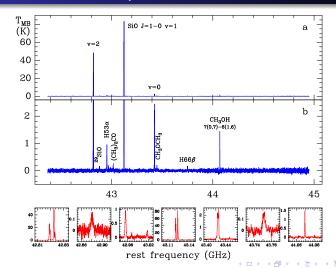

 RN: 02:2516.50
 5600:
 613.88:80
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0
 0:190.0</

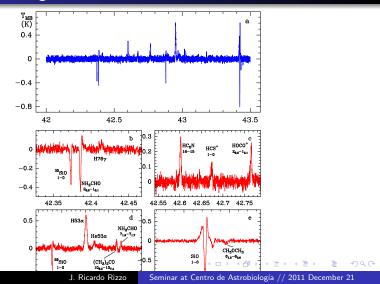
2551; 1 W30H 48372.456 DS554-Q-FT51 0:13-AUG-2011 R:13-AUG-2011 R:102:316.50 DEC: 6138:1580 Eq. 1950.0 015s: +0.0 +0.0 Uninown tos: 0.168 Tsys: 261. Time: 3.0 in: E1:33.2 N: 8192 I0: 4096.00 V0: -48.00 Dv: -1.135 LSR F0 48372.4560 Df: 0.1831 F1 0.00000000

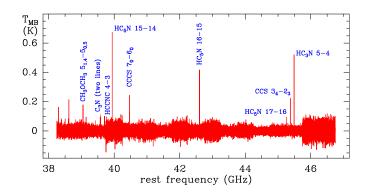


2543: 3 W30H CS(1-0) DSS4-0-FFSI 0:13-AUG-2011 R08-SEP-201
RA: 022316.00 EBC: 6138-850 Eq 1950.00 Offs: +0.0 +0.0
Unknown tosi: 0.168 Fgys' 282. Trie: 11. mit El: 33.2
R: 11571 10: 7475.00 VC: -48.00 Dr: -1.120 LSR
FD: 48900.9559 Dr: 0.133 Fi: -618.49900.00




Comparing synthesizers


Comparing synthesizers


A 2.6-GHz-bandwidth spectrum of Orion KL

Complexity of Sgr B2 in 20 minutes

A 8.5-GHz-bandwidth spectrum of TMC-1

Concluding remarks

 Commissioning results talks about a good facility:

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:

- Commissioning results talks

- Commissioning results talks about a good facility:

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps color clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - (3 GHz soon)
- 2 polarization
 simultaneously
- 2 frequencies
 - simultaneously
- pointing and calibration)

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps color clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps color clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps color clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps colo

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth
 - 2 polarization
 - simultaneously
 - 2 frequencies
 - simultaneously
 - (avoid problems with
 - pointing and calibration)
 - be now addressed

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth
 - 2 polarization
 - simultaneously
 - 2 frequencies
 - simultaneously
 - (avoid problems with
 - a new scientific cases can
 - be now addressed

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth (3 GHz soon)
 - 2 polarization simultaneously
 - 2 frequencies simultaneousl
 - (avoid problems with pointing and calibration)
 - new scientific cases can
 be now addressed.

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth (3 GHz soon)
 - 2 polarization simultaneously
 - 2 frequencies simultaneousl
 - (avoid problems with pointing and calibration)
 - new scientific cases can
 be now addressed

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth (3 GHz soon)
 - 2 polarization simultaneously
 - 2 frequencies simultaneous
 - (avoid problems with pointing and calibration)
 - new scientific cases can
 be now addressed

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth (3 GHz soon)
 - 2 polarization simultaneously
 - 2 frequencies simultaneously
 - (avoid problems with pointing and calibration
 - new scientific cases can

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth (3 GHz soon)
 - 2 polarization simultaneously
 - 2 frequencies simultaneously
 - (avoid problems with pointing and calibration)
 - new scientific cases can be now addressed

- Commissioning results talks about a good facility:
 - frequency stability
 - intensity stability
 - LO and HI channels in agreement
 - no important ripples
 - no spikes (depending on signal level)
 - good for most scientific cases, except perhaps cold clouds

- Initial objectives fulfilled
- Significant improvement to HCRA in Robledo:
 - 1.5 GHz bandwidth (3 GHz soon)
 - 2 polarization simultaneously
 - 2 frequencies simultaneously
 - (avoid problems with pointing and calibration)
 - new scientific cases can be now addressed

TO DO list:

Implement two
 independent frequencies
 Implement high resolutionment implement multicore
 Implement multicore
 Baseline trenavior and spike removal by

level

Optical fiber II

DONE after commissioning

TO DO list:

- Implement two independent frequencies
- Implement high resolution
- Implement multicore
- Baseline behavior and spike removal by improvement of signal layer
- Optical fiber !!

DONE after commissioning:

TO DO list:

- Implement two independent frequencies
- Implement high resolution
- Implement multicore
- Baseline behavior and spike removal by improvement of signal level
- Optical fiber !!

DONE after commissioning:

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

DONE after commissioning:

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

DONE after commissioning:

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

DONE after commissioning

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

DONE after commissioning:

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

DONE after commissioning:

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

- DONE after commissioning:
 - Cables replacement
 - Attenuators changed

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

- DONE after commissioning:
 - Cables replacement
 - Attenuators changed

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

- DONE after commissioning:
 - Cables replacement
 - Attenuators changed

- TO DO list:
 - Implement two independent frequencies
 - Implement high resolution
 - Implement multicore
 - Baseline behavior and spike removal by improvement of signal level
 - Optical fiber !!

- DONE after commissioning:
 - Cables replacement
 - Attenuators changed

- New backend ready for use with a single frequency and 1.5
 GHz bw.
- A period of exclusive exploitation by CAB researchers.
- Open to Spanish Community
- Change to K-band

- New backend ready for use with a single frequency and 1.5 GHz bw.
- A period of exclusive exploitation by CAB researchers.
- Open to Spanish Community
- Change to K-band

- New backend ready for use with a single frequency and 1.5
 GHz bw.
- A period of exclusive exploitation by CAB researchers.
- Open to Spanish Community
- Change to K-band

- New backend ready for use with a single frequency and 1.5 GHz bw.
- A period of exclusive exploitation by CAB researchers.
- Open to Spanish Community
- Change to K-band

Muchas gracias, y ...

FELICES FIESTAS!!